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On the first sheet write your name, address and student number. Write your name on all =

other sheets.

This examination consists of four problems, with in total 17 parts. The 18 parts carry
equal weight in determining the final result of this examination.

h = ¢ = 1. The standard representation of the 4 x 4 Dirac gamma-matrices is given by:
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PROBLEM 1
The Hamiltonian corresponding to the Dirac equation in an external electromagnetic field
is
H =777 +eAo(z) + m°, (1.1)
where 7, = pr + eAg(z) = —i (8k +ieAg (a:)) We define the helicity as the component of
the spin of the electron in the direction of the momentum
D= Str., (1.2)

S0

where the spin § = 175107

In the first two parts of this problem we set e = 0, i.e., we switch off the electromagnetic
field.

1.1 Show that [7°, ] = 0.
1.2 Show that the helicity is conserved: [H, ] = 0.

Now we set e # 0 and switch on the electromagnetic field, with vector potential
Ao(z) = 0, Ak(m) = %ek;mmlB'" 3 (1.3)

where B is a constant vector.

1.3 Show that the electric field corresponding to this vector potential vanishes, and that
the magnetic field is given by B.

1.4 Show that the helicity (which now also contains Ay, see eq. (1.2)!) is still conserved.



PROBLEM 2

A spinor field transforms under Lorentz transformations as

¥'(a') = S(A)Y(2) , (2.1)

where A is the Lorentz transformation matrix and z#' = A*,z".

2.1
2.2

2.3

2.4

2.5

Write down the Dirac equation for the free spinor field.

Prove that covariance of the Dirac equation under Lorentz transformations implies ~«

STHAYYS(A) = A*y". 2.2)

Consider a Lorentz transformation corresponding to a boost with velocity v in the
z!-direction, that is

zor_:,y(zo_vxl)’ mllzfy(—uz°+a:1), 2}2I=z2’ 13'::53, (23)
where
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Write the Lorentz matrix A#, for this transformation.

For infinitesimal Lorentz transformations we write
AL, =L L, (2.4)

Determine €*, for the transformation in (2.3), with v infinitesimal.

For infinitesimal Lorentz transformations we set
S=1+4S.

Obtain the relation between §S and €, from equations (2.2) and (2.4).

PROBLEM 3

3.1
3.2

3.3

Consider the theory of a scalar field ¢(z), with the Lagrangian density
L = $8,4(2)8"d(z) — 3m*$(z)(z).

What is the canonical momentum 7(z) corresponding to the coordinate ¢(z)?

Given that classically {¢(t, ), n(t,7)}pn = 6°(Z — #), what is the result of the equal-
time commutation relation
[6(2), 7(y)]ao=yo (3.2)

for the quantum operators ¢ and 7?

The operator ¢(z) can be written in the form

a(k)e"** 4 ot (lc)e““)kn:w,c ;
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Show that (20 # y°!)

(e—ik(z—y) = e+ik(z—y)) (3.3)

kO=wy *

3
(¢, ow1 = [ 5

2m)32wy,

3.4 Using (3.3) evaluate
[6(2), Byo b (y)],

and show that in the limit z° — y° the result of (3.2) is obtained.
PROBLEM 4
Consider the annihilation of an electron-positron pair into two photons:
et +e” s y+7,
with momenta

CE

et p1= (B, 5), € ¢ pa = (Ea, ), photons: ki = (w1, k1), ka2 = (wa, k3).

The process takes place in the laboratory frame:
=0

4.1 Why is w; = |ki|?
4.2 Express E; and p; in terms of the energies and momenta of the two photons.

4.3 The two photons appear under an angle 6 in this process: El -Ez = wywsy cos . Express
cos @ in terms of m,w,ws.

4.4 For which energies E; do we get cosf — 17



